New Ostrowski type inequalities for GA-convex functions
نویسندگان
چکیده
منابع مشابه
Ostrowski type inequalities for functions whose derivatives are preinvex
In this paper, making use of a new identity, we establish new inequalities of Ostrowski type for the class of preinvex functions and gave some midpoint type inequalities.
متن کاملNEW INEQUALITIES OF OSTROWSKI TYPE FOR CO-ORDINATED s-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
In this paper, using the identity proved [43]in for fractional integrals, some new Ostrowski type inequalities for Riemann-Liouville fractional integrals of functions of two variables are established. The established results in this paper generalize those results proved in [43].
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملOn Fejér Type Inequalities for (η1,η2)-Convex Functions
In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...
متن کاملNEW OSTROWSKI TYPE INEQUALITIES FOR CO-ORDINATED s-CONVEX FUNCTIONS IN THE SECOND SENSE
In this paper some new Ostrowski type inequalities for co-ordinated s-convex functions in the second sense are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Trends in Mathematical Science
سال: 2016
ISSN: 2147-5520
DOI: 10.20852/ntmsci.2016422032